Midterm Review



Plan

- Wewill go through all the key concepts following the course timeline
- Current Computing
- Computer System Evaluation
- Instruction set architectures and RISC-V
- Single cycle CPU design
- Pipelined CPU design
- Instruction-level Parallelism

- Do somereview problems



Current Computing

Moore’s Law:
The number of transistor on a chip doubles every period of time (2, 1.5, or 2.5 years).
It is enabled by Dennard Scaling.

Dennard Scaling:
As you reduce the size of the transistors, energy/power goes down proportionally.

However, Dennard Scaling started breaking down around 2003.



How to calculate energy and power of CMOS devices?
Energy = a x Capacitance x (Voltage * 2)
Power = Energy/time
= Dynamic Power + Static Power
=qax Capacitanch (Voltage * 2) x frequency + Current x Voltage
=aC(V*2)f + 1V

2
How to reduce power consumption?

Lower the voltage v \[?'

Lower the frequency r\,{



Computer System Evaluation

Performance: latency and throughput
Latency

Time a single fixed task costs to finish.

For example, the execution time of a benchmark is the latency.
Throughput

Number of works/operations done in a fixed period of time.

For example, the CPl is the throughput.



Iron Law
Time = # of instructions x cycle per instruction x time per cycle
= architecture x micro-architecture x technology
Speedup
Speedup = old time / new time
Amdahl’s Law

“the overall performance improvement gained by optimizing a single part of a system is limited by

the fraction of time that the improved part is actually used.”

1
Sisteney (8) = ————
T -+ 2

where
* Siatency IS the theoretical speedup of the execution of the whole task;

* sis the speedup of the part of the task that benefits from improved system resources;
« pis the proportion of execution time that the part benefiting from improved resources originally occupied.



Instruction set architectures and RISC-V

Instruction set architectures (ISA)

ISAis a contract between hardware and software.

Instruction format, virtual memory, number of registers, size of registers, exception, and etc. are parts of the ISA.
Reduced instruction set computing (RISC)

Small # of instructions.

Load/store architecture.

Operating on two operands.

Greatly simplifies implementation of allowed for higher frequency.

Complex instruction set computing (CISC)
Many instructions -> instructions are broken into sub-operations (micro code) by hardware



Single cycle CPU design

Every instruction goes through 5 steps:
1. Fetch

2.Decode instruction
3. Execute
4. Memory

5. Writeback

In single cycle CPU design, its cycle time is limited by the longest latency instruction.



Data Path:

Wires the data flows
across

Control Path:

Multiplexers which
enable multiple
instructions to use one
data path

Control Unit

JumpPeGen
»

—] write

— . R
peode - JumpDetecticn o
aluop 1=
x_ptin_claen se_phas
opl_src
1_sien_offsst S of
opa_src
funct3
operordl Laken
operand2
‘Adder J
resst Immediate Gen
(™ [ instruction sex tnm
ALU Control
a1y
o gt Data Memory
hoop address
functr mememad
3 menmrit
Register File oid
readregl rexddatal ALY mazkmod
resdreg2 readdata? b operation ult N
writerwg ordl wreedats
S
wort M operanaz

jzﬁ\(z;cj(/\Q -




Pipelined CPU design

The cycle time of a pipelined CPU design is the latency of its critical stage (the stage with the longest
latency).

Theoretically the maximum CPI of a single-issue pipelined CPU designiis 1.

However, pipelined CPU design introduces hazards.

Hazard

Hazard is a dependency that causes the pipelines to stall.



Data dependency

Dependency between two instructions occurs when source of a younger instruction is the
destination of an older instruction.

Forwarding the value from the older instruction to the younger instruction can hide or help the
hazard.

Control dependency
Dependency caused by waiting for the decision and target address of the branch instruction.
Branch prediction can hide this hazard.

Structure dependency

Dependency caused by multiple instructions having conflicts in resources.



Fetch

Decode

Execute

Memory

Writeback

Hazard
rsl
2 idox_mamvsad
v o dex_rd
pestall camem _taken
I flush  wx_meen_fush
_ia_stall id_ex_fush
= — JumpPcGen L
o > & = |m
= Control Unit E & w E
1 e Jurgpe e
L opocn P a JumpDetection .. =
slop = yimpaz pe_piin_offut e pitas_cffart < o
opl_src _J apl_ples_odet et p1_plen_niflue z
op2_sre e funct3 ¥
act_type | g H W | PRt
_lergeh 1
2% H 4] operanaz token
S ooyt O
C x
validinst w
[ e
b=} b=
13 c
o o
o o
= =
w w
= =
Adder -I g g §
inputx result Immediate Gen < g b
inputy L instruction sextimm o ALU Control o I}
2 £ 2
4 s Data Memary
2 adaress readdata
b memread
" L+ AW memwrite
7o) operation  result |
Register File U1 - valid
Cperan
rmademgl reacdatal o e maskmode
readregz reacdataz ; = seat
] writarag ; writedata
— wen
—{ wreecora —
- 1
= )
1\ L] 3
1}_]
== |
formardA forward8
b— 2 exmem_rd
S exmem_rw
Pipelined DINO CPU a4
memwb_rw
Forwarding



Instruction-level Parallelism

Static ILP

Static scheduling

Loop unrolling

Very long instruction word (VLIW)
Dynamic ILP

Out of order execution



Do some review problems

Pipelined CPU on paper simulation



T/m P(ogmm s €><€C<A;(—€cL W Me WC“’Q &+aam F«‘Peim@ D;moCFU

The beanch eveé«ﬂo@ Wil predick  wo+ <alken and  he  branch vesult  will
be notr +aken.

1 2 3 4 ) ’6 7 8 9 10 |1 12 |13 |14 15
addif(%kﬁl,ﬁsm" = D E M w,
w0 E DB MW
40 F D EMW
Zeﬂ; Dl B M W,
S@ﬂ Fsmllizzg/%l\dv\(é\w




