Discussion 9

March 5th

Outline

- gem5 assignment 5
 - Introduction to the gem5 simulator
 - Look at the assignment 5 components
- Quiz 9

Introduction to the gem5 simulator

What is gem5?

Michigan m5 + Wisconsin GEMS = gem5

"The gem5 simulator is a modular platform for computer-system architecture research, encompassing system-level architecture as well as processor microarchitecture."

Lowe-Power et al. **The gem5 Simulator: Version 20.0+**. ArXiv Preprint ArXiv:2007.03152, 2021. https://doi.org/10.48550/arXiv.2007.03152

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. **The gem5** simulator. SIGARCH Comput. Archit. News 39, 2 (August 2011), 1-7. DOI=http://dx.doi.org/10.1145/2024716.2024718

Created at Michigan by Steve Reinhardt and his students, principally Nate Binkert.

"A tool for simulating systems"

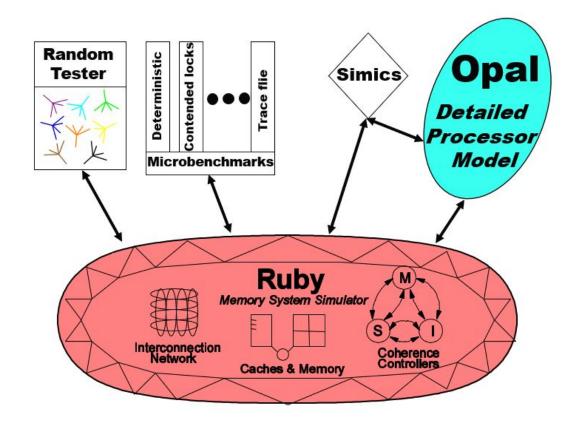
Two Views of M5

- 1. A framework for event-driven simulation
 - Events, objects, statistics, configuration
- 2. A collection of predefined object models
 - CPUs, caches, busses, devices, etc.

- ☐ This tutorial focuses on #2
- You may find #1 useful even if #2 is not

Created at Michigan by students of Steve Reinhardt, principally Nate Binkert.

"A tool for simulating systems"


n by students of Mark Hill and David

Detailed memory system

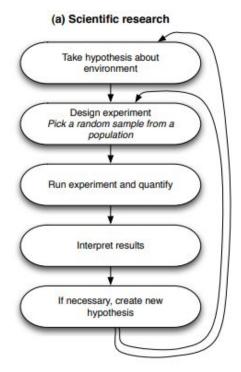
GEMS From 50,000 Feet

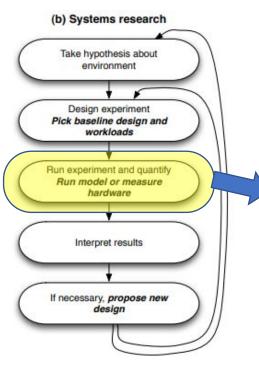
Why simulation

Need a tool to evaluate systems that don't exist (yet) Performance, power, energy, etc.

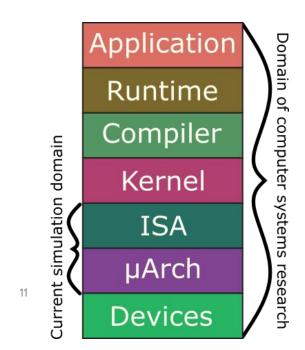
Very costly to actually make the hardware

Computer systems are complex with many interdependent parts

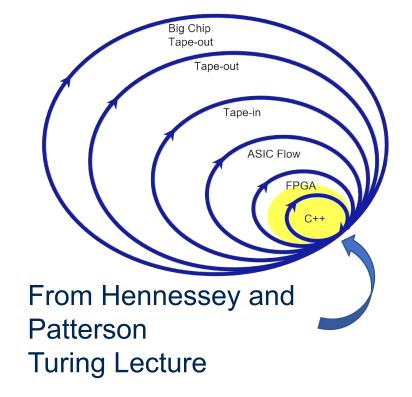

Not easy to be accurate without the full system


Simulation can be parameterized Design-space exploration Sensitivity analysis

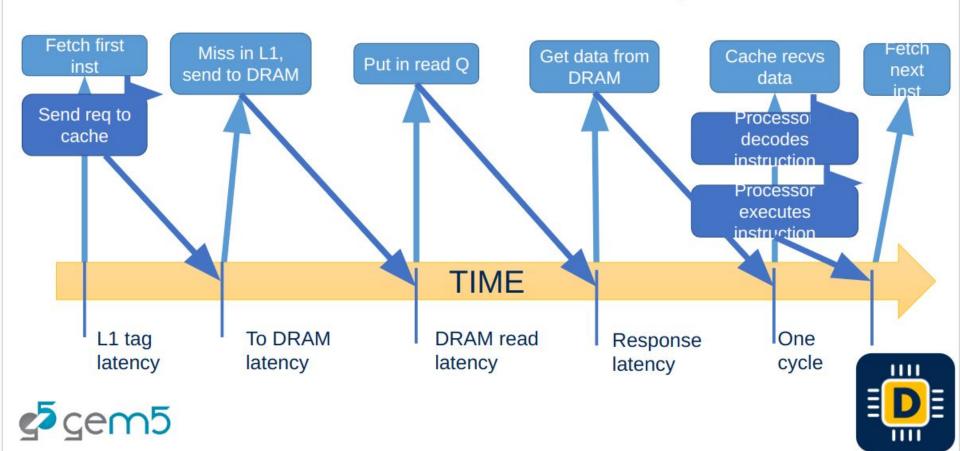
Computer systems research/engineering


From Computer Architecture
Performance Evaluation
Methods by Lieven Eeckhout

Computer architecture simulation!



gem5's goals


Agile Hardware Dev. Methodology

Discrete event simulation example

Let's look at the gem5 assignment 5's setup

Quiz 9

4 pts

Question 4

Which system is the most energy efficient (uses the least energy)?

[Select]

$$t_1 = I \times CPI_{3/4} + I_{1}$$

$$t_2 = I \times (25\% + \frac{75\%}{2}) \times CPI_{3/4} + I_{2}$$

$$t_2 = t_1 \times (25\% + \frac{75\%}{2}) \times \frac{f_1}{f_2} = I \times t \times (25\% + \frac{75\%}{2}) \times \frac{2GH_2}{I \cdot 5GH_2}$$

$$= 0 \cdot 833 t$$

4 pts

tic are constant.

Assume you have an application where 75.0% is parallelizable.

You have three systems, a one core system, a two core system, and a four core system. Fill in the table below with the relative performance, power, and energy for each of the systems.

Cor	es Capacita	nce Voltag	ge Frequenc	У	Time	Power	Energy
1	1*c	1V	2 GHz	1*t		2*c	2ct
2	1.8*c	.9V	1.5 GHz	[Select]	0.833+	[Select]	
4	2.5*c	.7V	1 GHz	[Select]	0.18t. ·	[Select]	

Which system is the most energy efficient (uses the least energy)? $t_4 = t_1 \times \left(25\% + \frac{75\%}{4}\right) \times \frac{26H_2}{16H_2}$

2 1.8*c .9V 1.5 GHz [Select] 0.833t. \checkmark [Select] 2.14C.

4 2.5*c .7V 1 GHz [Select] 0.88t. \checkmark [Select] [-22C.

Which system is the most energy efficient (uses the least energy)?

[Select] \checkmark CV^2f $Power_2 = (.8c \times (-9)^2 \times (.5GHz) = 2.19c$. $Power_4 = 2.5c \times (.7)^2 \times (.5GHz) = 1.22c$.

Question 4

2.5*c

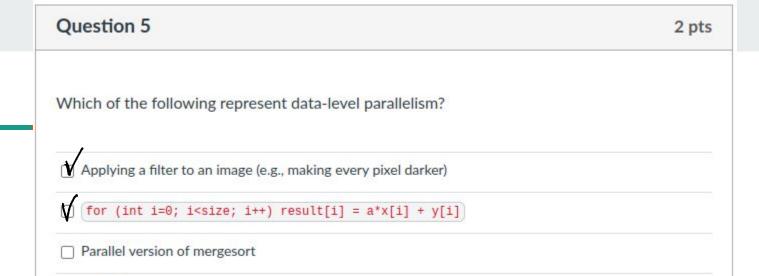
4 pts

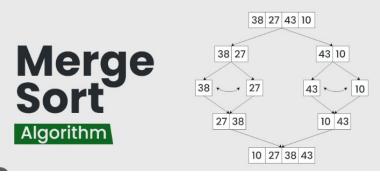
tic are constant.

Assume you have an application where 75.0% is parallelizable.

You have three systems, a one core system, a two core system, and a four core system. Fill in the table below with the relative performance, power, and energy for each of the systems.

Cor	es Capacita	nce Volta	ge Frequenc	у	Time			Power	Energy
1	1*c	1V	2 GHz	1*t			2*c		2ct
2	1.8*c	.9V	1.5 GHz	[Select]	0-833t.	~	[Select]	2.190.	1-820


[Select] 0.88+ . v [Select] [-226.


Which system is the most energy efficient (uses the least energy)?

1 GHz

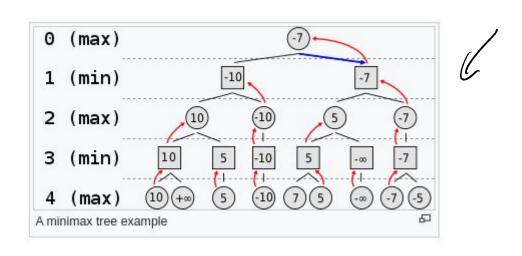
[Select]

[Select] 4 core. Frangy
$$2 = 0.833 + \times 2.19c = 1.82ct$$
.
Energy $4 = 0.88 + \times (.22c = 1.07ct)$.

A webserver serving requests from many clients

Data - Level. When the application has [Select] * parallelism a SI	
When the application has [Select] parallelism, a SI	MD architecture is
probably more efficient than a MIMD architecture.	
Question 7	2 pts
Question /	2 pt3
Implementing communication via message passing is required when whice true?	
Implementing communication via message passing is required when which	
Implementing communication via message passing is required when whice true?	

Question 8 2 pts Which of the following are examples of message passing architectures? Most smartphones The AMD Epyc system discussed at the end of the memory section A GPU ▼ Super computers (e.g., Summit → at ORNL and Sierra → and LLNL) Most desktop computers Data centers


Question 9 2 pts

Read the wikipedia pages on the minimax algorithm \rightarrow . This algorithm can be used for playing games and maximizes the minimum value of an opponents' move.

Which parallel programming technique do you think would be most appropriate to parallelize minimax?

O Data-level parallelism / SIMD by using array operations

