Discussion 5

Feb. 6th



Outline

Midterm clarification:

- Youwon't be asked to implement the register renaming and out of order execution but it will cover your
understanding on register renaming and out of order execution.

- AsummaryonILP
- Example on dependency and register renaming
- Week 5 quiz
- Q10->whyCPlisrelated to throughput
- (if we have time) Example on static scheduling, loop unrolling, and multi-instruction pipelined



Static ILP and its limitations

- Done by the compiler on static code
- Dependent on the application

- Static scheduling

- Loopunrolling

- VLSIISA

Limitation

Can not detect dynamic dependencies
Require complex compilers

Larger code blocks

Can’t deal with unpredictable delays



Dynamic Scheduling

- Hardware rearranges the instruction execution to reduce stall while maintaining data flow and
exception behavior (Out of order execution)

- It can handle cases when dependences are unknown at compile time

- It can create parallel execution windows

- Tomasulo’s algorithm is a great example of how it can be implemented

- But now we have hazard to deal with
- Therequired busses and functional units are available (structural hazard)
- RAW dependency (true dependency)
- WAW dependency (false dependency)
- WAR dependency (false dependency)



RAW & +wue duPeV\&cv\cy

Solving WAW/WAR hazard with register renaming

e
addi x6,x7, 16 WS‘S\QP\ EZI ZQ&Q)PS ) aAAW )(6/ x7\/ [ &
- sulo Pl oeXt, X§
=
(W (O,
d P2, xt,

bVlé K;Z/fq/q’
sw Pl 8L




Week 5 quiz



Question 1 1 pts

For an always not taken predictor, what is the accuracy for the given branch outcomes?

TINT|T|INT|T|NT|T|NT|T|NT|T|T|NT|NT|NT|T|NT|NT|T|T

Question 4 1 pts

For a 2-bit saturating counter predictor, what is the accuracy for the given branch outcomes?
The initial prediction is 'weakly taken'

TINT|T|T|INT|T|INT|T|T|INT|NT|T|T|INT|T|T|T|T|T|T




Question 5 1 pts

Mark the true statements.

(] The order of instructions in the program can affect the performance
[[] Compilers can re-arrange instructions to increase performance
[[] Sometimes there are independent instructions that the compiler cannot find

[[] Compilers can re-arrange instructions to reduce hazards and stalls




Question 6 2 pts

For the following program, what is the "best" schedule without changing the program?
Assume the DINO CPU pipeline without any branch prediction. l.e., there is a one cycle load
to use hazard and branches are resolvedrrThe menTory stage.
a:[lw s1, (1532)s0

&l _
R b:|sra s1,

2 LEe—
C: | add s11, a3 bé— C
.>d: ori a4, a3, -1597
e: blt t a5 de— @,
f:(siti s1, (s1) 964 eé—‘(} )

\(é é,d,ﬂ.e.f
=20 &—

O aedb,.cf

O acbdef
O ab,cdef

O bd,caef




Question 7 1 pts

Mark the true statements.

[] Loop unrolling can expose instruction level parallelism

(] Loop unrolling will increase the memory footprint of the code

[] Loop unrolling reduces the number of dynamic branch instructions

(] When executing code with loops unrolled, the total number of dynamic instructions is about the same
[] Loop unrolling makes the code have fewer static instructions

(] Loop unrolling always increases performance




Question 8 (B -‘,\Ab"‘b ’ 1 pts

AU
AL?QA \g, W

cl/ ~ NN
Nk

Compiler transformations like loop unrolling can improve the performance of applications by

# sy < CPT XCYC(Z’M' :

e —

having which effect(s) on the Iron Law?

d Reduce the CPI
[J Increase the number of dynamic instructions )( '{'Df \oa? =0 LS . S [oQPXb
Q{ Reduce the number of dynamic instructions 'oo? LWO

owe e

(] Reduce the cycle time )(
[] Reduce the number of static instructions ><
(7] Increase the CPI X

[ Increase the cycle time X

(J Increase the number OWG— X




Question 9 2 pts

Which two instructions have a write-after-write dependence that would require using a new
temporary register? —

a: add t5, t5, t4
=

7,b: lw<512 236(t5)

c:/bge t4, t3, -1265

d:(ori a7, t3, -1100

e:|sw s1, 732(t5)

\_f: xori@ t3, -646

O bé&c
O a&b
l{{b&f
O a&e
O bé&e
O c&d

O e&f




CPT

f

Ipc .

EV\9~\/

cyc\a_ :

Question 10

2 pts

Assume you have a processor design which is 2-wide in-order. In other words, you can fetch

R
up to two instructions, decode up to two instructions, execute up to two instructions, send

up to two instructions to memory, and write back up to two instructions each cycle. Assume

that you cannot forward/bypass in the same cycle and have to stall any dependent instructions

by at least 1 cycle.

What is the average cycles per instruction? (Ignore the warm up time. Ignore the cxclesJ/

before the first instruction completes.)

sll s@, s7, s3 j GYC[Z 2

N g

sra s8, s7, s3

TTie

R
sra_ad, so, @

T <7 v

2 )
\/
\LT\’H‘U*‘UW SRNyY

MO Imdis=

sy s8)-720(s0)
sra s0, s8, s7

Va PEERN
Xor s3, 52,

b

‘Vﬂﬂviggfig

N
(N

Uom= =gt

()

6 rpdas
JO (nsks
O-<

a



Question 11 1pts

Which of the following instruction pairs can you not execute in the same cycle?

VARV ) O*xg mE/y\,tﬂQ_fQ] = :[V\CO*{&1<

w x1, ©(x2) and sw x4, ©(x8)
- ) e f—
lw x1, ©(x2) and| 1w x4, 8(x8)
w x1, ©(x2) and| lw x4, ©(x8)

addi x1, x2, ©|and subi x4, x8, ©

addi x1, x2, @ and|subi x4, x8, 8

OO0 0| 0| O] &4

i

w x1, (x2) and sw x4, 8(7\) O—% RT/)LZE \\ ASQ %%Rtﬂi];
l



Question 12 1 pts

Mark all that are true.

[[] Dynamic methods for finding ILP are more flexible to runtime dependencies (e.g., address
dependencies)

(] Increasing the window of instructions can increase the ILP, but it also increases the complexity, power,
and area

[[J] Dynamic ILP techniques implemented in hardware uses less power and area than static techniques
implemented in the compiler

[[] VLIW ISAs are better than RISC ISAs when implementing hardware for dynamic ILP




Question 13 1 pts

In out-of-order processor you can only execute instructions out of order, you still must issue
instructions in order and complete (or commit) instructions in order. Why?

[] Must issue in order to make sure that exceptions/interrupts happen precisely for the right instruction.
(] Must issue in order to determine their dependencies.

[[J] Must commit instructions in order to make sure that exceptions/interrupts happen precisely for the
right instruction.

(] Must commit instructions in order to determine their dependencies.




Question 14 2 pts

Assume you have the following 4 instructions that are decoded and waiting to execute.
Assume the machine has 8 registers like the example in lecture.

i1l: source regs: 1, 3. Destination reg: 2
i2: source regs: 4, 2. Destination reg: 3
i3: source regs: 0, 4. Destination reg: 7
i4: source regs: 0, 6. Destination reg: 6
Registers 1 and 5 are currently busy

Because of which rules can i2 not be executed? (It may help to draw out the matrices)

[] (i) The required busses and functional units are available.
(7] (iv) The source or destination register will be written by a prior instruction
(] (iii) The destination register is used as a source for a prior instruction

[] (ii) The registers are busy.




Question 15 2 pts

Assume the following hardware state. There are some instructions currently executing, and

others that have been decoded and are waiting to execute. Use this information to answer
the questions below.

Currently executing instructions
FDEMW,

o
Instrugtions waiting to eXecute

@ s9, zero

W
sw s3,/-1320(s1)
j A
ori @

> s1, t3

R

Which instructions can be sent to execute at this time (assume there are enough
execution/functional units and busses)?

%r s8, 59, zero
% s3, -1320(s1)

(] oris9,t0, -164

i

(] subs3,s1, t3




Question 16 2 pts

Assume the following hardware state. There are some instructions currently executing, and
others that have been decoded and are waiting to execute. Use this information to answer
the questions below.

Currently executing instructions

sub a2, s8, s5 —

sll a5, s5, a5
"\ _RAW
orf a6, @ -1923
xor Vsls‘i‘\@z ] é——-
With register renaming Which instructions can be sent to execute at this time (assume there
are enough execution/functional units and busses)?

[ ori a6, a5, -1923

[‘y‘xor a5, s5,t2

d sub s8, a6, zero

Msll a5, s5,a5




Question 17

2 pts

Mark all of the types of hazards that can occur in an out-of-order superscalar processor
design.

(] Write after read
[] Write after write
[CJ Rename

[[] Read after write
[[] Read after read
(] Control

[J Structural




Example on Static Scheduling and Loop Unrolling

loop:
Example program: lw x2, 0(x1) // get x[ ]
void foo (size_t n, int x[], int y[]) { muliw x2,x2, 10 // 10 *x[ i ]
for (size_ti=0;i<n;i++){ Iwx4,0(x3) // get yli]

v[i1=10*x[i]+y[i] addw x4, x4,x2 // 10 *x[i]+vy[i]
sw x4, 0(x3)

addix11,x11,1//i++

addix1,x1,4 //intis 4 bytes soaddrof x+ 4
addix3,x3,4 //addrofy +4

bne x11, x10, loop // if i = n, then continue looping



loop:
Iw x2,0(x1) // get x[i]
muliw x2,x2, 10 // 10 *x[ i ]
Iw x4,0(x3) // get y[i]
addw x4, x4,x2 // 10 *x[i]+yl[i]
sw x4, 0(x3)
addix11,x11,1//i++
addix1,x1,4 //intis 4 bytes so addr of x+ 4
addix3,x3,4//addrofy +4

bne x11, x10, loop // if i !=n, then continue looping






Id, x1, 0(x2)

=
adgl, 1

sd{x1)0(x2)
2

addi x2,x2,4

sub x4,‘>®

bnd x4,)x0, loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FE DE MW
E(D sl B2 MW
Fad D FL M W
FDE MW
FDE"M W
D BN W




