
Discussion 5

Feb. 6th

Outline

- Midterm clarification:
- You won’t be asked to implement the register renaming and out of order execution but it will cover your

understanding on register renaming and out of order execution.

- A summary on ILP

- Example on dependency and register renaming

- Week 5 quiz
- Q 10 -> why CPI is related to throughput

- (if we have time) Example on static scheduling, loop unrolling, and multi-instruction pipelined

Static ILP and its limitations

- Done by the compiler on static code

- Dependent on the application

- Static scheduling

- Loop unrolling

- VLSI ISA

Limitation

- Can not detect dynamic dependencies

- Require complex compilers

- Larger code blocks

- Can’t deal with unpredictable delays

- …

Dynamic Scheduling

- Hardware rearranges the instruction execution to reduce stall while maintaining data flow and

exception behavior (Out of order execution)

- It can handle cases when dependences are unknown at compile time

- It can create parallel execution windows

- Tomasulo’s algorithm is a great example of how it can be implemented

- But now we have hazard to deal with
- The required busses and functional units are available (structural hazard)

- RAW dependency (true dependency)

- WAW dependency (false dependency)

- WAR dependency (false dependency)

-

Solving WAW/WAR hazard with register renaming

addi x6, x7, 16

sub x6, x7, x8

lw x10, 8(x8)

add x8, x7, x6

bne x7, x9, 400

sw x6, 8(x10)

Week 5 quiz

I

Example on Static Scheduling and Loop Unrolling

Example program:

void foo (size_t n, int x[], int y[]) {

for (size_t i = 0; i < n; i ++) {

y[i] = 10 * x[i] + y[i];

}

}

loop:

 lw x2, 0(x1) // get x[i]

 muliw x2, x2, 10 // 10 * x[i]

 lw x4, 0(x3) // get y[i]

 addw x4, x4, x2 // 10 * x[i] + y[i]

 sw x4, 0(x3)

 addi x11, x11, 1 // i ++

 addi x1, x1, 4 // int is 4 bytes so addr of x + 4

 addi x3, x3, 4 // addr of y + 4

 bne x11, x10, loop // if i != n, then continue looping

~

loop:

 lw x2, 0(x1) // get x[i]

 muliw x2, x2, 10 // 10 * x[i]

 lw x4, 0(x3) // get y[i]

 addw x4, x4, x2 // 10 * x[i] + y[i]

 sw x4, 0(x3)

 addi x11, x11, 1 // i ++

 addi x1, x1, 4 // int is 4 bytes so addr of x + 4

 addi x3, x3, 4 // addr of y + 4

 bne x11, x10, loop // if i != n, then continue looping

ld, x1, 0(x2)

addi x1, x1, 1

sd x1, 0(x2)

addi x2, x2, 4

sub x4, x3, x2

bne x4, x0, loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

