Discussion 3

Jan 22,2024

Outline

1. DINOCPU assignment2
a. auipcinstruction
b. Memory instruction
c. Branchinstruction

2. Week 3quiz

/'OI
* Main control logic for our simple processor

*

* Input: opcode: Opcode from instruction

* Output: aluop Specifying the type of instruction using ALU

X .for none of the below

N . 1 for arithmetic instruction types (R-type or I-type)

X . 2 for non-arithmetic instruction types that uses ALU (auipc/jal/jarl/Load/Store)

* Output: arth_type The type of instruction @for R-type, 1 for I-type)

* Qutput: int_length The integer length @for 64-bit, 1 for 32-bit) C‘&V\"d\"j
* Output: jumpop Specifying the type of jump instruction (J-type/B-type)

A . 0@ for none of the below

. . 1 for jal b \{‘61 {52/0
R . 2 for jalr Cﬁ& !

* . or branch instructions (B-type)

* Qutput: memop Specigng the type of memory instruction (Load/Store) L/____,_j

for none of the below

% . 1 for Load

* . 2 for Store

* Output: opl_src Specifying the source of operandl of ALU/JumpDetectionUnit
* f source is register file's readdatal

& . 1 if source is pc

* Output: op2_src Specifying the source of operand2 of ALU/JumpDetectionUnit
% .f source is register file's readdata2

* . 1 if source is immediate

* . 2 if source is a hardwired value 4

* Output: writeback_src Specifying the source of value written back to the register file
A .f writeback is invalid

* . 1 to select alu result

A . 2 to select immediate generator result

* . 3 to select data memory result

* Output: validinst 0 if the instruction is invalid otherwise

-

* For more information, see section 4.4 of Patterson and Hennessy.
* This follows figure 4.22.
wA

auipc Instruction

auipc instruction details

The following table shows how the auipc instruction is laid out.
31-12 11-7 6-0 Name
imm[31:12] rd 0010111 auipc

auipc stands for “add upper immediate to pc”. The instruction has the following effect,

v|f"_’_—7
R[rd] = pc + imm << 1

Adder
inputx result

nputy

Inst Memory

JumpPcGen

address instruc

Control Unit
oo\oll\ 4
ey OpCOde ~— jumpop |= O JumpDetection N
opl
aluop
=_offs s _offsc
b jomnpop pe_plus_offset pn;nh: xn(
1_plus_affset opl_plus_offset
op2_src Ging
arth_type functd
int_length operandl R
memep
writeback_src operandz
validinst —_——
Immediate Gen l |
sextimm “l.l
ALU Control
arth_type
~—— int_length Data Memory
Shion, operatin =5 address readdata
funct? l memread
13 | memwrite
Register File | valid
readregl readdatal L ALY
readreg2 readdata2 L] operation result ek
writereg O | operandl writedata
wen @ operand2
] writedata

Pipelined DINO CPU

Memory Instruction

31-25 24-20 19-15 14-12 11-7 6-0 Name

imm[11:5] imm[4:0] rsi 000 rd 0000011 Ib

imm([11:5] imm([4:0] rs1 001 rd 0000011 Ih

imm[11:5] imm[4:0] rsl 010 rd 0000011 Iw LDR&
imm[11:5] imm([4:0] rs1 011 rd 0000011 Id

imm[11:5] imm([4:0] rsi 100 rd 0000011 Ibu

imm[11:5] imm([4:0] rsi 101 rd 0000011 Ihu u‘(\ﬁg@V\e/;)
imm[11:5] imm([4:0] rsi 110 rd 0000011 Iwu

imm[11:5] rs2 rsl 000 imm[4:0] 0100011 sb

imm[11:5] rs2 rsl 001 imm[4:0] 0100011 sh G%O(ez -
imm([11:5] rs2 rs1 010 imm[4:0] 0100011 sw

imm[11:5] rs2 rsi 011 imm[4:0] 0100011 sd

/'

* The *interface* of the DMemPort module.

-

-

-

-

-

*

*

Pipeline <=> Port:

Input: address, the address of a piece of data in memory.

Input: writedata, valid interface for the data to write to the address

Input: wvalid, true when the address (and writedata during a write) specified is valid
Input: memread, true if we are reading from memory

Input: memwrite, true if we are writing to memory

Input: maskmode, mode to mask the result. © means byte, 1 means halfword, 2 means word, 3 means doubleword
——————— — e ﬁ"__\

Input: sext, true if we should sign extend the result

—

Output: readdata, the data read and sign extended
Output: good, true when memory is responding with a piece of data

/

v class DMemPortIO extends MemPortIO {

// Pipeline <=>
val writedata
val memread =
val memwrite =
val maskmode =
val sext =

val readdata =

Port
Input(UInt(64.W))
Input(Bool())
Input(Bool())
Input(UInt(2.W))
Input(Bool())

Output (UInt(64.W))

e et

JumpPcGen
Control Unit
ey
S P offsct 7
ode jumpop k| JumpDetection .
op!
aluop f-
i R lus_offset lus_offsct
opl_sic f= O jumpep P L
% opl_plus._offset opl_plus_offset
op2_src - |
arth_t functd
b operandl taken
memep |
writeback_src ‘% opera:
validinst \
Adder
inputx result Immediate Gen |
nputy sextimm I
ALU Control
arth_type
int_length Data Memory
Suop Pperatian address readdata f——
Inst Memory funct? memread
. 0
address instruc memwrite
Register File e\ —| valic
ALY
readregl readdatal
readreg2 readdata2 | operation result soxt
£0) operandl writedata
writereg 1
wen operand2
—{ writedata I8¢
2,

Pipelined DINO CPU

Branch Instruction

imm[12, 10:5]

31-25

imm[12, 10:5]

imm[12, 10:5]

imm[12, 10:5]

imm([12, 10:5]

imm[12, 10:5]

imm[12, 10:5]

rs2

24-20

rs2

rs2

rs2

rs2

rs2

rs2

rs1 funct3

19-15 14-12

rsi

rsi

rsi

rsi

rsi

rsi

imm[4:1, 11]

11-7

imm[4:1, 11]

imm[4:1, 11]

imm[4:1, 11]

imm[4:1, 11]

imm[4:1, 11]

imm[4:1, 11]

op asUIng

op . s STnt
opcode Name
6-0
1100011 beq
1100011 bne
1100011 bit
1100011 bge
1100011 bitu_
1100011 bgeu

sl==vs62
P f=N= 82
rs| & ¥sL
i > (52

/"
* JumpDetection Unit.
* This component takes care of deciding the PC of the next cycle upon a jump instruction (jump/branch-type).

* Input: jumpop Specifying the type of jump instruction (J-type/B-type)
—_—
A . @ for none of the below
- . 1 for jal -
3 . 2 for_jalr
N . 3 for branch instructions (B-type)
* Input: operandil First input
——
* Input: operand2 Second input
* Input: funct3 The funct3 from the instruction
- E— «
t?c;-ﬁ (VWA VWAL
* Output: pc_plus_offset True if the next pc is the current pc plus the offset (imm)
——— (
* Qutput: opl plus_offset True if the first operand is the first operand plus the offset (imm) i)x?\ ‘§~gv~\.z
* Qutput: taken True if, either the instruction is a branch instruction and it is taken, or it is a jump instruction
*/

v class JumpDetectionUnit extends Module {
val io = IO(new Bundle {
val jumpop
val operandi
val operand2

Input(UInt(2.W))
Input (UInt(64.W))
Input(UInt(64.W))

val funct3 = Input(UInt(3.W))
val pc_plus_offset = OQutput(Bool())
val opl_plus_offset = Output(Bool())
val taken = Output(Bool()ﬂ

1

/.t
* JumpPcGenerator Unit.
* This component takes care of calculating the pc that the jump instruction is jumping to.

* Input: pc_plus_offset True if the next pc is the current pc plus the offset (imm)
* Input: opl_plus_offset True if the first operand is the first operand plus the offset (imm)
* Input: pc The PC of the current instruction
* Input: opl The first operand of the current instruction
* Input: offset The offset (imm) of the current instruction
* Qutput: jumppc The pc that the jump instruction is jumping to
4

class JumpPcGeneratorUnit extends Module {
val io = IO(new Bundle {

val_pc_plus offset = Input(Bool())
val opl plus_offset = Input(Bool())

val pc = Input(UInt(64.W))
val opl = Input(UInt(64.W))
val offset = Input(UInt(64.W)) ‘(yAW
—_—
val jumppc = OQutput(UInt(64.W))
—_—
b))

// default case, i.e., not a jump instruction
io.jumppc := 0.U

when (io.pc_plus_offset) {
io.jumppc := io.pc + io.offset

!

.elsewhen (io.opl_plus_offset) {
io.jumppc := io.opl + io.offset

JumpPcGen
Control Unit
o
S P offsct 7
opcode jumpop | R ——i JumpDetection .
op!
aluop f— o
el o jomnpop pe_plus_offset pe_plus_offset
& opl_plus_offset opl_plus_offset
op2_stc k- O
athiype f—Q functd
intlength |— O operandl taken
memop |—~O
writebaek se L operandz
vadinst |y
Adder
inputx result Immediate Gen |
nputy i sextimm
ALU Control
arth_type
it Jomis Data Memory
Shiop Dperation address readdata f—
Inst Memory funct? memread
3
address instruction memwrite
Register File valid
ALY
readregl readdatal
readreg2 readdata2 | operation result sast
Q operandl writedata
writereg 1
wen @ operand2
] writedata ’l
:

Pipelined DINO CPU

Reminders

1. Use “instruction”, don’t use “imem.io.instruction”
2. Don't modify the source code of “JumpPcGeneratorUnit”

3. Theimmediate generator will produce the shifted and sign extended value! You do not need to

shift the immediate value outside of the immediate generator.

q) . &bSIV\"\— Qo(\ SL@Y\QA W
LS D Tar \Cor W\S’wawé R4S o

Week 3 Quiz

Like the last quiz, we're going to be comparing the same two systems: The AMD Epyc and

Intel i7.

I've run a few other SPEC workloads on these two systems.

AMD Epycintel i7

gce 274.3s 180.0s
——
mcf 301.1s 186.3s
libquantum 313.1s 230.4s
Use this info for the questions below.
-
Question 1

2 pts

T

‘N~
For mcf, what is the Speedup of the Intel i7 compared to the AMD Epyc? QA' _ 0 \‘; ¥
et SFe p=

wen e

Like the last quiz, we're going to be comparing the same two systems: The AMD Epyc and
Intel i7.

I've run a few other SPEC workloads on these two systems.

AMD Epycintel i7

gec 2743s 1800s 5 — — ‘57- 3

—

mcf 301.1s 186.3s _
libquantum 313.1s 230.4s — . b\ é’

Use this info for the questions below. —__ \ . SS &

Question 2

2 pts

For which application does theiget the greatest speedup?

(b/mcf

O libquantum

O gcc

Like the last quiz, we're going to be comparing the same two systems: The AMD Epyc and
Intel i7.

I've run a few other SPEC workloads on these two systems.

AMD Epycintel i7
gcc 274.3s_/ 180.0s
mcf 301.1s / 186.3s
libquantum 313.1s / 230.4s

Use this info for the questions below.

/_\—\——\/—'

AL TESELIREEIE

Question 3 —_— 2 pts

j —— = (- q%‘
3 T
What is the average speedup for these three :applicat‘ior‘@?J \&O A [& 6 3 * 236 C&

Hint: Use the correct average statistic. See section 1.2 in the book.

Question 4 2 pts

You are a computer architect working at a startup. Your marketing department says "If we
want to succeed, we need to get a 1.8x speedup compared to our competition."

Unfortunately, you and your competitor use the same foundry and will end up with about the
same frequency and you're using the same ISA as your competitor.

So, you only have control over the microarchitecture. How much "improvement” in B
(instructions per cycle which is 1/CPl) is required for you to meet marketing's goal?

Teon (o exer . PR =Hnst X CPIH c)d%’\“,

O 1.2x

(- &K
= 2Dligx

Question 5 2 pts

You are working on a new generation processor with a new ISA, a new microarchitecture, and
a new manufacturing process. This new architecture will allow you to increase the frequency

by 1.5x, but it requires increasing the number of instructions by 1.0x. Since these are simpler
instructions, you've found a way to decrease the CPI from 3 to 1.2. What is the overall

_speedup of this new design? ‘
old wmst « 3 « T

S{)@Q&\A% =z —T— =
I I
o

3 _ 325

-2 %'(J,"Z;' —

\

Question 6

2 pts

The ISA is the contract between the

[Select] v/

engineers E

programming language

[Select]

application

runtime
microarchitecture
hardware

v and the

Question 7 2 pts

Which of the following is part of the ISA?

GZ/ Virtual memory
lJSize of registers

[[J] How to implement the hardware (e.g., pipelined, number of ALUs, etc.
{Q{ Number of registers

\d Instruction format

Question 8 2 pts

RISC ISAs usually have [Select] v | different instructions defined
[Select]
compared to CISC ISA: &
more
Question 9 2 pts

A program compiled for a RISC ISA will probably dynamically execute

[Select] ¥ instructions than if it was compiled for a CISC ISA.

fewer
more

Question 10 2 pts

One of the main in technology which drove the industry to move from CISC ISAs to RISC ISAs
is that high-level language compiler technology improved.

Mrue

O False

Question 11 2 pts

Decode the registers for the following R-type instruction. Give your answers in decimal (not

ary or hex).
wﬂ VoL (51 ﬁjvé opo

010000 110(*91011 01 9011&)119011

MSB <--> LB

Source register 1:

Source register 2:

Destintation register:

Question 12

2 pts

3~

|2 (29,01,

The following instruction is a JAL instruction. What is the sign of the immediate value?
l2&0090110010111011101011011101111 il

MSB <--> LSB

(O negative

&}/ positive

Question 13 1 pts

Which of the following characteristics of the RISC-V ISA makes it simpler to implement in
hardware than a CISC ISA?

[[] There are extensions so customers can add their own instructions.
(] It has many different kinds of R-type instructions.
[[] The destination register is always in the same location in the instruction.

[[] The instructions are all the same width (32 bits).

Question 14

1 pts

The JAL instruction is used for...

(O Memory operations

(O Conditional statements

(O Function calls

(O System calls

(O Simple arithmetic operations

(O Loading immediate values into the register file

Question 15 2 pts

" This time, let's encode an instruction instead of decoding.
Given the following assembly, choose the correct binary representation.
sub x30 x3 x9

MSB <--> LSB

' 91000000100100011011111100110011
101101101100100011000111100000011

010000010101110110111111001160011

O|lO|0]| O

01000000100100011000111100110011

