Discussion 1

Office Hour

Thursday 2-3 pm L&f@ 4 e SEay sS4 I
. i S (=2 :

Room Kemper 3106 (3rd floor) fxf

¢
—

n1_f\fin e L
o EHERSHET:

Ty —
H

t iIF E/l! ili 51

)
i
0

Goal today

nuhwbde

Create a github Codespace for assignment 1
Introduction to Chisel

Create a simple hardware with Chisel

Test and debug the hardware

Introduction to assignment 1

Github CodeSpace

Assignment 1 page: https://jlpteaching.github.io/comparch/modules/dino%20cpu/assignment1/

Monthly included storage and core hours for personal
accounts @

The following storage and core hours of usage are included, free of charge, for personal accounts:
Account plan Storage per month Core hours per month

GitHub Free for personal accounts 15 GB-month 120

https://jlpteaching.github.io/comparch/modules/dino%20cpu/assignment1/

What is Chisel

“Chisel, short for Constructing Hardware in a Scala Embedded Language, is an
open-source hardware description language (HDL) used to describe digital electronics and
circuits at the register-transfer level. It is based on Scala as an embedded domain-specific
language (DSL), bringing the power of object-oriented and functional programming to
type-safe hardware design and generation. Chisel facilitates advanced circuit generation
and design reuse for both ASIC and FPGA digital logic designs. It enables agile, expressive,
and reusable hardware design methodologies.”

— bing ai

16ay

zbou

result

(=T

128

success

ALY

64

D Q ¢ q_

WE ¢ out

P> R

b ¢ in
0000000000000003 mu— o:tl
D
WE
»
MU 1
x64

Chisel Basics

Chisel Cheat Sheet:
https://github.com/ECS154B-WQ24/dinocpu-assignment1/blob/main/documentation/chisel-notes/che

at-sheet.md

https://github.com/ECS154B-WQ24/dinocpu-assignment1/blob/main/documentation/chisel-notes/cheat-sheet.md
https://github.com/ECS154B-WQ24/dinocpu-assignment1/blob/main/documentation/chisel-notes/cheat-sheet.md

Wires

val x = Wire(UInt()) 1]

X

Create a wire (named x) that is of type uint . The width of the wire will be inferred. Important: this is one of the few times you will use =
and not :=.

s

Connect two wires

y

Connect wire x to wire y . This is "backwards" in that the input is on the right and the output is on the left. However, it's forwards in the way
you say it out loud. (For the example above, think " y is connected to x .")

Muxes

Muxes

Mux

val x = Wire(UInt())

X := Mux(selector, true_value, false_value)

This creates a wire x which will have the true_value onitif selector istrue andthe false value otherwise.

When-elsewhen-otherwise

val x = Wire(UInt(3.W))

when(value === 0.U) {
X i= "beO1".U

} .elsewhen (value > 0.S) {
X := "be10".U

} .otherwise { // value must be < @
X := "b100".U

¥

The above creates a one-hot value on the wire x depending on whether the wire value is 0, greater than 0, or less than 0.

Types Types

Boolean

e Bool() :a 1-bit value.
e true.B :to convert from a Scala boolean to Chisel, use .B.
e false.B :to convert from a Scala boolean to Chisel, use ..

Integers

UInt(32.w) :an unsigned integer that is 32 bits wide.
e UInt() :an unsigned integer with the width inferred. (You may get an error saying it can't infer the width.)

« 77.U :to convert from a Scala integer to a Chisel unsigned int, use .u . (You may get type incompatible errors if you don't do this
correctly.)

e 3.S(2.W) :signed integer that is 2 bits wide (e.g., -1).
e "phEE1010".U : to create a binary literal, use a string of 1's and 0's starting with "b". Then, you can convert this string to an unsigned int
with .u or asigned int with .s .

Reglsters State elements (registers)

e Reg(UInt(64.W)) : A 64-bit register

e RegInit(1.U(32.w)) :A32-bit register that has the value 1 when the system starts.

Registers can be connected to other wires.

val register = Reg(UINnt(32.W))

X := register

——— x

This takes the value coming out of the register and connects it to the wire x .

Modules

Example: A 64 bit adder module

C I-]-_

¢ out ‘

class Adder extends Module {
val io = I0(new Bundle{

val inputx = Input(UInt(64.W))
val inputy = Input(UInt(64.W))
val result = Output(UInt(64.W))
})
io.result := io.inputx + io.inputy

}

Build your first hardware in Chisel

Documentation:

https://github.com/ECS154B-WQ24/dinocpu-assignm

ent1/blob/main/documentation/chisel-notes/first-har
dware.md

1 success
0

https://github.com/ECS154B-WQ24/dinocpu-assignment1/blob/main/documentation/chisel-notes/first-hardware.md
https://github.com/ECS154B-WQ24/dinocpu-assignment1/blob/main/documentation/chisel-notes/first-hardware.md
https://github.com/ECS154B-WQ24/dinocpu-assignment1/blob/main/documentation/chisel-notes/first-hardware.md

Now let's create the hardware

In the dinocpu assignment directory,

go to ‘src/main/scala/simple.scala’

zbay

16ay

inputx
result

inputy

inputx
result

nputy

1 —/rn success
u
X

Assignment 1

Part 1: Draw out your hardware design

Part 2: Use Chisel to describe it

Cantrol Unit

......

- ALU Control

arth_type
int langth

H

ﬁPipdined DINO CPU

nnnnnnnn

